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FIGS. 10, 11. Cavities in the S2 layer of birch caused by the white-rot fungus, Auriculana auncula-judae 11380. Cavities 
appear light against the dark cell wall. 10. Longitudinal view of cavities. Bore holes from penetrating hyphae are obvious 
(small arrows) and cavities are often highly branched (large arrow). Tangential section. 11. Transverse view of cavities within 
the S2 cell wall layer (arrows). Bars = 25 ,im. 

Aphyllophorales. These levels of decay are generally 
similar to those reported previously for the Dacry- 
mycetales (Seifert, 1983), but in some cases are high- 
er, especially for Calocera cornea, Dacrymyces chrysos- 
permus and Dacryopinax spathularia. 

Decay caused by all the Dacrymycetales in our tests 
was clearly characterized by chemistry, anatomy, and/or 
morphology as brown rot. Calocera viscosa, which was 

reported to cause white rot (Seifert, 1983), caused 

weight loss below our threshold for chemical analysis 
(as it did in the previous study), but morphology and 

anatomy in discrete zones of decay had the hallmarks 
of brown rot: external and internal browning, shrink- 

age, and lack of wall thinning and erosion in the 

presence of hyphae. Basidiomes of C. viscosa in a 

specimen from our Herbarium were also associated 
with brown rot. 

Gasteromycetes. Low levels of decay (2-10%) were 
caused by fungi in the gasteromycetous orders of the 

Homobasidiomycetes. Such decay was indistinguish- 
able from that caused by typical white-rot fungi. 
There are previous reports of wood decay in the gas- 
teromycetes but they are not well documented 
(Shields and Shih, 1975). The marine gasteromycete 

Nia vibrissa reportedly causes white rot but no weight 
loss could be detected in laboratory tests (Leightley 
and Eaton, 1979). 

Other Homobasidiomycetes. As expected, members 
of the Aphyllophorales generally caused high weight 
losses and both white and brown rot occurred, even 

among fungi that are usually classified in the same 

family. The few members of the Agaricales tested 
here caused white rot. 

Selective delignification.-Fungi that selectively de- 

grade lignin (L/W > 1) have potential for applica- 
tions such as biopulping. Among the most selective 

delignifiers in this study, only Phlebia tremellosa has 
been well studied in this regard. However, others, 
previously unreported as selective delignifiers, were 

similarly or even more selective. On pine, Crucibulum 
laeve and Sphaerobolus stellatus, both gasteromycetes, 
and Exidia crenata #580 were highly selective. On 
birch, Mycena leaiana (an agaric), several members 
of the Auriculariales, and S. stellatus were highly se- 
lective for lignin. 

Wood decay and fungal phylogeny.-Wood is the most 
abundant form of fixed carbon in forested ecosys- 
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tems, but the ability to quickly decay wood is not 
widespread among decomposers. This, and the ap- 
parent complexity of the process (Zabel and Morrell, 
1992), suggest that wood is a recalcitrant substrate for 
most decomposers and that efficient decay mecha- 
nisms evolved infrequently. Thus, although decay ca- 
pability may have evolved independently in several of 
the groups of fungi treated here, it is also possible 
that the capability was maintained and enhanced as 
some groups arose from earlier ones. If so, features 
of decay may contribute clues to phylogeny. 

Effect of nutrients. Evidence suggests that efficient 
utilization of mineral nutrients, especially nitrogen, 
by conservation and recycling is a specialized adap- 
tation of some Aphyllophorales to the mineral-poor 
environment of wood (Cowling and Merrill, 1966). 
Our finding that decay by such fungi was usually in- 
hibited and rarely increased by added nutrients sup- 
ports that hypothesis. The Dacrymycetales showed a 
similar response. 

A corollary of the above hypothesis is that less 

highly adapted decay fungi, or those similar to the 
earliest wood-decay fungi, would be less efficient with 
nutrients and therefore stimulated by added 
amounts. The Xylariales, Diatrypales and the Exidi- 
aceae showed such stimulation and no inhibition by 
added nutrients. The deuteromycetes and other As- 

comycota also generally showed stimulation by nutri- 
ents but, as decay levels were relatively low in soil- 
block tests, it was rarely significant. Soft-rot fungi in 

general, including others that did not cause substan- 
tial decay in this experiment, are known to be stim- 
ulated by nutrients (Worrall and Wang, 1991). 

Thus, with respect to the effect of nutrients, wood- 

decaying Ascomycota and the Exidiaceae are similar 
and behave as might be expected of the earliest fungi 
capable of decaying wood. The Aphyllophorales/ 
Agaricales and the Dacrymycetales, which have mech- 
anisms for efficiently utilizing low levels of nutrients, 
would thus represent more advanced wood-decay 
fungi. 

Soft-rot and white-rot fungi. The earliest fossil rec- 
ord of wood decay is from stems of Callixylon in the 
Devonian, 395 million years before present (Stubble- 
field et al., 1985). Cavities and erosion were associ- 
ated with septate but unclamped hyphae, which 
could represent ascomycetous or basidiomycetous 
fungi. The decay features were unclear, but consis- 
tent with soft rot. The first record clearly indicating 
decay by a basidiomycete (white pocket rot), is from 
Vertebraria in the Permian, 280 million years before 

present (Stubblefield and Taylor, 1986). 
Soft-rot fungi, although apparently well adapted 

for adverse environments (Duncan, 1960), seem to 
be less well adapted for rapid wood decay than white- 

and brown-rot fungi. Soft-rot fungi are found on a 
wide array of lignocellulosic substrates, such as her- 
baceous plant debris, whereas basidiomycetous de- 
cayers are usually restricted to wood. Most ascomy- 
cetes that decay wood do so slowly. Most data, includ- 
ing ours, indicate that they degrade relatively less lig- 
nin than do white-rot fungi. Thus, they may have 
inefficient mechanisms for degrading lignin, which 
protects carbohydrates from enzymes. Their reliance 
on high levels of mineral nutrients (see above) also 
suggests a limited degree of adaptation to the wood 
environment. Furthermore, as suggested above, soft 
rot may precede basidiomycetous decays in the lim- 
ited fossil record. 

Physiological similarities between soft and white 
rot suggest that the causal fungi may be related. For 
instance, many ascomycetous decayers have a com- 
plete cellulase system like white-rot fungi, but others 
lack exo-l,4-3-glucanase as do most brown-rot fungi 
(Ljungdahl and Eriksson, 1986). In our study, several 

ascomycetes, such as some Xylariales, had the same 

complement of tested phenoloxidase activities (gallic 
and tannic acid, laccase, and peroxidase) as did typ- 
ical white-rot fungi. Thus, if basidiomycetes arose 
from ascomycetes (Bartnicki-Garcia, 1987; Bruns et 
al., 1991), it seems likely that some components of 
the early decay apparatus, such as cellulases and 

phenoloxidases, were maintained during that transi- 
tion. 

Members of the Xylariaceae and Chaetomiaceae 
and a few additional species showed other advanced 

decay features in our study, including relatively high 
weight loss and lignin degrading ability. Moreover, 
decay by the Xylariaceae and Diatrypaceae as en- 
countered in the field is different from other soft-rot 

fungi. Other soft-rot fungi are often active only on 
the wood surface or mixed with other fungi. The de- 

cayed wood tends to be brown and may have surface 

cross-checking similar to that in brown-rotted wood. 

Decayers in the Xylariaceae and Diatrypaceae (which 
are sometimes grouped in the same order), in con- 
trast, may colonize large volumes of wood in what 

appears to be a pure colony. The decayed wood ap- 
pears bleached white and often has zone lines. Thus, 
these higher ascomycetes have decay features that are 
similar to those of white-rotting basidiomycetes. In- 
deed, the decay is sometimes referred to as white rot 
(Eaton and Hale, 1993). This is not to suggest that 
such an extant group gave rise to the Basidiomycota, 
but that ascomycetes in general possess physiological 
capabilities that could have developed into decay 
mechanisms very similar to those of white-rotting ba- 

sidiomycetes. 
Some groups of white-rotting Heterobasidiomyce- 

tes, on the other hand, showed relatively primitive 
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decay features. As discussed above, anatomical fea- 
tures and nutrient effects in the Exidiaceae were sim- 
ilar to those in the Ascomycota. Members of the Au- 
riculariaceae caused intrawall, longitudinal cavities, 
although they were different from those formed by 
soft-rot fungi. Thus the Auriculariales may be close 
to the first white-rot fungi that developed from as- 

comycetous ancestors. 
Several phylogenetic schemes consider the Basidi- 

omycota to be rooted near the Auriculariales (Jiilich, 
1981; Savile, 1968) Our results are consistent with 
that hypothesis. A progenitor group with transversely 
septate basidia (or asci) and primitive decay features 

may have given rise to the order, in part by conver- 
sion to longitudinal septation (Exidiaceae) and in- 
creases in the efficiency of decay mechanisms (Auri- 
culariaceae). It is not essential to this hypothesis that 
all transitional taxa decay wood; nondecaying transi- 
tional fungi may have retained many of the genes 
necessary for soft rot, which later became more use- 
ful as basidiomycetes began to utilize woody substra- 
ta. 

An obvious difference between soft rot and white 
rot is the common presence of longitudinal cavities 
in soft rot. The tertiary wall or warty layer at the lu- 
men surface often has a high phenolic content, at 
least in softwoods (Fengel and Wegener, 1984). This 

layer may be difficult for soft-rot fungi to erode, as 

they can degrade lignin to only a limited extent. Cav- 

ity formation may be a means to colonize less ligni- 
fled portions of the wall. As fungi became better able 
to degrade lignin (white rot), perhaps cavities were 
no longer a necessary strategy. 

Brown-rot fungi. Although relatively few fungi 
cause brown rot, they are widely, if unevenly, distrib- 
uted among groups of basidiomycetes. Brown rot is 

widespread, if not universal, in the Dacrymycetales. 
It also has been confirmed in an unrelated member 
of the Heterobasidiomycetes, Helicobasidium corticioi- 
des (Davidson and Hinds, 1958), now placed in the 

Platygloeales (Bandoni, 1984; Ginns and Lefebvre, 
1993). Some known or suspected brown-rot fungi not 
tested by us are usually classified in the Agaricales, 
where there are many white-rotters (Redhead and 
Ginns, 1985). 

The Aphyllophorales is the only order in which two 

major types of decay occurred in this study. In the 

polypores, white and brown rot are interspersed with- 
in groups of apparently closely related fungi. Several 

genera of the Corticiaceae are associated with brown 
rots (Gilbertson, 1980; Ginns and Lefebvre, 1993). 
The Coniophoraceae, where brown rot appears to be 
a consistent feature, is placed by some authors in the 
Boletales (Ginns and Lefebvre, 1993). 

Gilbertson (1980) developed a convincing argu- 

ment that brown-rot fungi evolved from white-rot 

fungi recently and independently in a number of 

groups. Most have a unifactorial mating system, 
which is considered to be derived by simplification 
of the bifactorial system more common in white-rot 

fungi. This may increase the inbreeding level, which 
would be advantageous during speciation. Gilbertson 
considered brown-rot fungi better adapted to conif- 
erous habitats than white-rot fungi and generally 
more efficient in obtaining energy from wood. 

Although the mechanisms of wood decay are not 

entirely clear, there are two important differences be- 
tween white and brown rot. First, white-rot fungi de- 

grade lignin extensively, which apparently facilitates 

enzyme access to carbohydrates. Brown-rot fungi do 
not cause such an extensive loss of Klason lignin, and 

usually lack the extracellular phenoloxidases that are 
characteristic of white-rot fungi. Second, whereas 
white-rot fungi degrade carbohydrates enzymatically 
at an exposed surface, brown-rot fungi apparently 
have a non-enzymatic oxidative mechanism for initial 

depolymerization of carbohydrates, and usually lack 

exo-1,4-3-glucanase. 
Thus, development of a brown-rot fungus from a 

white-rot fungus would be characterized, in large 
part, by simplification: conversion from bifactorial to 
unifactorial mating system and loss of extracellular 

phenoloxidase and exoglucanase. Development of 
the nonenzymatic mechanism of depolymerization 
would be necessary, but current hypotheses suggest 
that it involves in part simple, inorganic products. 
Once that mechanism was in place, extensive delig- 
nification and fully enzymatic depolymerization 
would no longer be necessary and those characters 
would eventually be lost. However, some brown-rot 

fungi, such as Oligoporus fragilis, still produce what 

may be "vestigial" extracellular phenoloxidases. Lack 
of such oxidases may be an advanced feature rather 
than a primitive one as has been suggested (Nobles, 
1958). Members of the Coniophoraceae still have an 

exo-1,4-3-glucanase (Highley, 1975). 
Thus, the ability to decay wood probably evolved 

slowly, beginning with soft-rot fungi in the Ascomy- 
cota. White-rot fungi in the Basidiomycota probably 
evolved from fungi causing a soft-rot type of decay, 
and may have arisen independently along several 
lines in the Basidiomycota. Once white-rot fungi were 

highly specialized for the wood environment, brown- 
rot fungi apparently arose from them in many 
groups, most especially in the polypores. If so, it is 
ironic to consider that only when fungi had con- 

quered lignin, the great barrier to wood decompo- 
sition, via white rot, did they find a way to largely 
circumvent it via brown rot. 
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